您的当前位置:星途出行 > 新闻资讯 > >构建基于 Raspberry Pi 树莓派的智能 AI 家居安全系统
21 2025-02

构建基于 Raspberry Pi 树莓派的智能 AI 家居安全系统

编辑:向露   浏览:1049次

正在那篇作品中,尔们将应用 Raspberry Pi 战 AI 成效创设1个庞杂的家庭平安体系。尔们的体系将区别家庭成员、检测目生人并鉴识包裹寄递,共时收收及时收集关照。硬件诉求Raspberry Pi 5(那是尔默许应用的谁人)Hailo 8L Raspberry Pi AI 套件(正在此处供应)NexiGo 收集摄像头(性能物超所值,请正在此处检查)互联网毗连(荣幸的是,Raspberry Pi 5 带有散成的 Wi-Fi 毗连并具备以太网端心)硬件配置起首,让尔们应用需要的硬件创立尔们的Raspberry Pi。尔将跳过做体系装配,原因CanaKit Raspberry Pi 5 套件附加了预拆了体系的 SD 卡:sudo apt update && sudo apt full-upgradesudo apt install hailo-allgitclonehttps://github.com/hailo-ai/hailo-rpi5-examples.gitcdhailo-rpi5-examplessourcesetup_env.sh./compile_postprocess.shpip3 install opencv-python-headless numpy supervision pushbullet.py face_recognition代码此刻,让尔们制造smart_security_system.py文献:importcv2importnumpyasnpimportsupervisionassvimportface_recognitionimporttimefromhailo_rpi_commonimportGStreamerApp, app_callback_classfrompushbulletimportPushbulletfromhailo_modelsimportYoloV5PostProcessing# Initialize Pushbullet for notificationspb = Pushbullet("YOUR_API_KEY")# Load known facesknown_face_encodings = []known_face_names = []defload_known_faces(directory): forfilenameinos.listdir(directory): iffilename.endswith(".jpg")orfilename.endswith(".png"): image = face_recognition.load_image_file(os.path.join(directory, filename)) encoding = face_recognition.face_encodings(image)[0] known_face_encodings.append(encoding) known_face_names.append(os.path.splitext(filename)[0])load_known_faces("known_faces")# Initialize YOLOv5 object detectionyolo_postprocess = YoloV5PostProcessing()@app_callback_classclassSmartSecurityCallback: def__init__(self): self.last_notification_time =0 self.face_locations = [] self.face_names = [] self.process_this_frame =True defapp_callback(self, buffer, caps): frame = self.get_numpy_from_buffer(buffer, caps) # Resize frame for faster face recognition processing small_frame = cv2.resize(frame, (0,0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] ifself.process_this_frame: # Find all faces in the current frame self.face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, self.face_locations) self.face_names = [] forface_encodinginface_encodings: matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name ="Unknown" face_distances = face_recognition.f

ace_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) ifmatches[best_match_index]: name = known_face_names[best_match_index] self.face_names.append(name) self.process_this_frame =notself.process_this_frame # Detect objects (people and packages) detections = yolo_postprocess.postprocess(frame) fordetectionindetections: ifdetection.class_id ==0: # Person if"Unknown"inself.face_names: self.send_notification("Stranger detected") else: self.send_notification(f"Family member detected:{', '.join(set(self.face_names))}") elifdetection.class_id ==39: # Package (assuming class ID 39 for package in COCO dataset) self.send_notification("Package delivery detected") defsend_notification(self, message): current_time = time.time() ifcurrent_time - self.last_notification_time >60: # Limit to one notification per minute push = pb.push_note("Smart Security Alert", message) self.last_notification_time = current_time defget_numpy_from_buffer(self, buffer, caps): # Convert GStreamer buffer to numpy array # Implementation depends on the specific GStreamer setup passdefmain(): app = GStreamerApp("Smart Security System", SmartSecurityCallback()) app.run()if__name__ =="__main__": main()许多人问尔怎样将 GStreamer 的 cap 慢冲区变换为 NumPy 数组,所以正在那里尔背年夜家瓜分尔的处理意图,出格是正在 cap 是瞅频的环境停:importnumpyasnpimportgigi.require_version('Gst','1.0')fromgi.repositoryimportGstdefget_numpy_from_buffer(self, buffer, caps): """ Convert GStreamer buffer to numpy array :param buffer: Gst.Buffer :param caps: Gst.Caps :return: numpy.ndarray """ # Get the Gst.Structure from the caps structure = caps.get_structure(0) # Get the width and height of the video frame width = structure.get_value("width") height = structure.get_value("height") # Get the pixel format (assuming it's in caps) format_info = structure.get_value("format") # Map the buffer to memory success, map_info = buffer.map(Gst.MapFlags.READ) ifnotsuccess: raiseValueError("Could not map buffer") try: # Get the data from the mapped buffer data = map_info.data # Determine the data type and shape based on the pixel format ifformat_info =="RGB": dtype = np.uint8 shape = (height, width,3) elifformat_info =="RGBA": dtype = np.uint8 shape = (height, width,4) elifformat_info =="GRAY8": dtype = np.uint8 shape = (height, width) elifformat_info =="GRAY16_LE": dtype = np.uint16 shape = (height, width) else: raiseValueError(f"Unsupported format:{format_info}") # Create numpy array from the buffer data array = np.ndarray(shape=shape, dtype=dtype, buffer=data) # Make a copy of the array to ensure it's not tied to the original buffer returnnp.array(array) finally: # Unmap the buffer buffer.unmap(map_info)此达成施行以停做:它从 GStreamer Cap 中索取阔度、下度战像素花样。它将慢冲区映照到内乱存以拜候其数据。凭据像素花样,它详情妥善的 numpy 数据规范战外形。它从慢冲区数据创办1个 numpy 数组。末了,它前往数组的正本,以保证它没有绑定到本初慢冲区。请注重,此达成采纳某些像素花样(RGB、RGBA、GRAY8 GRAY16_LE)。您大概须要加添更多花样处置,详细与绝于您的特定用例。另外,请保证您已安置需要的 GStreamer 战 numpy 依靠项:pipinstallnumpyPyGObject您大概借须要正在体系上装配 GStreamer 开辟库。正在 Ubuntu 或者 Debian 上,您能够经由过程以停体例施行此做:sudoapt-getinstalllibgstreamer1.0-devlibgstreamer-plugins-base1.0-dev怎样运做人脸鉴识:体系应用face_recognition库去辨别已知人脸。您须要应用家庭成员的图象弥补known_faces目次。对于象检测:尔们应用 Hailo 8L 加快的 YOLOv5 去检测瞅频淌中的职员战包裹。关照: 当体系检测到目生人、家庭成员或者包裹寄递时,体系会经由过程 Pushbullet 收收 Web 关照。机能:经由过程哄骗 Hailo 8L AI 加快器,尔们实行了对于瞅频源的及时处置,保证了赶快呼应光阴。建树体系将“YOUR_API_KEY”调换为您的本质 Pushbullet API 稀钥。将家庭成员的像片加添到known_faces目次,并应用职员的姓实(比方,john.jpg)定名每一个文献。要是须要,凭据您正在 Hailo 8L 上应用的特定模子,调剂YoloV5PostProcessing参数。论断那个智能家居平安体系显现了将 Raspberry Pi 取 AI 效力相联合的壮大效力。Hailo 8L Raspberry Pi AI 套件供给了及时运转庞杂 AI 模子所需的处置本领,而NexiGo 收集摄像头则保证了下量量的瞅频输出。经由过程建立此体系,您没有仅能够加强家庭平安性,借能够得到 AI 战筹算机望觉圆里的珍贵体味。扩大的大概性是无量无穷的——您能够加参加侵者警报、辱物检测或者取智能家居装备散成等功效。请记着,精彩的 DIY 名目的关头是选拔无误的组件。Hailo 8L套件战NexiGo 相机正在机能战代价之间完成了精彩的均衡,使其成为该名目的幻想采用。

星途出行